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Abstract 

The present paper  reports on algorithms for the  computation of the av- 
erage  phase of a beam over a detector in the  near field. This work is part of 
the diffraction  modeling  efforts for the Space  Interferometry Mission (SIM). 
The basic  idea is to reconstruct  the  optical field numerically and  then use 
a quadrature  algorithm  to  evaluate  the  quantity of interest.  The various 
algorithms  that employ  discrete  Fourier  transform  techniques for the  compu- 
tation of the field are described and numerical tests  that assess the  accuracy 
of these  algorithms  are  presented.  There is not one particular  algorithm 
that delivers the desired  accuracy over the  entire  range of Fresnel numbers 
of interest,  but each  one  can  produce  satisfactory  results  within a particular 
range.  Finally, new methods  to  evaluate  the average phase  are  introduced 
and  their efficiency is assessed. 

Introduction 

Diffraction  is  one of the  fundamental  subjects in optics because of its 
theoretical  interest  and  its  practical  applications. For most  cases the far- 
field approximation, Fraunhoffer  diffraction, provides a sufficient framework 
of analysis. There  are cases, however, where near-field diffraction effects are 
important. 

Such cases abound in the Space  Interferometry Mission (SIM), a part 
of NASA’s Origins  program.  Applications  that require near-field diffraction 
calculations  include  the  calibration of measurements of the  internal  metrol- 
ogy system, modeling of corner  cube effects, starlight-system  modeling etc. 
Highly accurate diffraction  calculations, down to  the picometer level, are 
necessary  in  all  these  applications. 

The  quantity of interest is the average  phase of the field over an  optical 
element, usually a detector. Typically, its  computation  consists of two steps. 
The first  one is the  reconstruction of the  optical field and  the second one is 
the numerical  integration of the field  over the element. The present study is 
concerned with  the available  algorithms for both  steps. 

The  boundary value  problem that governs free-space beam  propagation 
in  the  near field has been studied extensively and  results  can  be  found  in 
standard  textbooks, e.g., Goodman [l]. In  the  past, many different methods 
have  been  proposed for evaluation of near-field diffraction  integrals. One 
such method is based  on  local  approximation  techniques of the  integrand; 
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see, e.g., Stamnes et al., [ a ] ,  D’Arcio et al., [3], and  others.  Other  methods 
rely  on  numerical  integration.  Examples of this  approach  are the  algorithm 
of Southwell, [4], which employs  Gaussian quadrature,  and  the  algorithm of 
Kraus, [ 5 ] ,  which is based upon a finite-element  formulation of the diffraction 
integral.  Approximate  procedures that require less computing  time  have  also 
been  presented.  Such  procedures have been employed in the asymptotics- 
based  scheme of Horwitz, [6], and  the scheme of Carcole e t  al., [7], which is 
based  on  approximations of the diffraction  integral  with  simpler  ones that 
admit  a closed-form representation. 

Over the years,  dicrete  Fourier  transform  methods have become  a  pop- 
ular choice for near-field diffraction  calculations. Such methods have  been 
developed by Sziclas & Siegman, [8], Mansuripur, [9], Mendlovic et al., [lo], 
and  others. More recently,  Mas et al., [ll], proposed an algorithm  based 
on the fractional  Fourier  transform.  The  main  advantages of Fourier-based 
methods  are easy  implementation,  robustness,  and  speed. 

As mentioned  above, the second step for the  computation of the average 
phase  is the numerical  integration of the field. The  errors  that  are  introduced 
during  this  step might  be substantial.  In principle, the  integration  can be 
performed  via the multi-dimensional  extension of quadrature rules  such as 
Simpson’s  rule,  Gaussian integration,  and  others. 

The first  objective of this work is to compare the performance of exist- 
ing  Fourier-based  algorithms  under very high accuracy  requirements.  These 
algorithms  are described below  in some detail for completion  purposes. The 
regimes of their effectiveness are explored through  a series of tests.  Studies 
of the performance of these  algorithms  with  such high accuracy  requirements 
have  not  been  previously  reported  in the  literature.  The effectiveness of 
various  techniques for numerical  integration of the field is also  discussed. 

The second  objective  is to propose new methods for the  evaluation of the 
average  phase. More specifically, for  oversized elements an  exact closed-form 
solution is derived.  Finally,  a new, hybrid  algorithm for the average  phase  is 
introduced.  It is  based  on an  inherent  reciprocity  property of the  quantity of 
interest  and  the  partitioning of the  optical element to rectangular  elements. 

Formulation and Solution of the Boundary  Value Problem 

The free-space  beam  propagation  problem is formulated  as follows. Con- 
sider  an  isotropic,  homogeneous,  nondispersive  and  non-magnetic  medium 
covering the half space SI ( x ,  y, z 2 0). Further, consider an  aperture, 
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denoted by r, at the  plane x = 0, emitting plane waves of wavelength X. The 
generated  optical field can  be fully described by a scalar  complex function, 
U ,  satisfying  the  scalar Helmholtz equation, 

( ax2 ay2 az2 ) a2 a 2   a 2  
-+-+-+IC2 U ( x , y , z )  = 0 ,  ( x , y , x ) E . Q ,  (1) 

a Dirichlet  condition at the  boundary z = 0, 

and  the Sommerfeld radiation  condition at infinity, 

In  the above system, k is the wave-number, defined as k = 27r/X. R is the 
distance of the  point of observation ( x ,  y, z )  from the  origin,  and j is the 
imaginary  unit.  The Sommerfeld radiation  condition  sets  the  boundedness 
requirement for the  solution  and  determines  the  direction of propagation of 
the waves. At infinity they  should  be  travelling away from  the  aperture, 
Goodman [ 11. 

The problem  can  be solved by applying  the Fourier transform in the x 
and y directions,  then solving the  resulting  Ordinary Differential Equation 
(ODE), and finally  applying  the inverse Fourier transform.  The  result  is 
given by 

+cm 

"00 

where 

is the Fourier transform of the field at the  boundary z = 0. It is  usually  called 
"the  angular  spectrum" of the field. In  the sequel, the above  expression is 
referred to as the first integral representation of the  optical field. 
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An alternative way to obtain  the solution is to make use of Green’s  the- 
orem.  This  approach is often  called the  “point source” method.  The result 
is the well-known Rayleigh-Sommerfeld  diffraction  formula, 

where 7-01 is the  distance of the point of observation ( x ,  y, z )  from a point 
([, 7) inside r, 

7-01 E 4 2 2  + (a: - + (y - q)2 

This is the second  integral  representation of the  optical field.  One  can take 
advantage of the fact that  the boundary data  are identically zero outside 
the  aperture I? and  extend  the  limits of integration to infinity. The two 
representations, (4) and (6), are completely  equivalent, Le., they  result  in 
identical fields. Further,  the first  representation  can  be  deduced  from  the 
second one by direct  application of the convolution  theorem. 

The well-known Fresnel  approximation  arises when the  square  roots in the 
arguments of the complex  expenentials of the above  expressions are replaced 
by the first  two terms of their binomial  expansions.  In other words, 

and 

Relation (8) can  be substituted  into (4). Relation  (9)  can  be  substituted 
into  the complex  exponential  in (6). For equation (6) and for propagation  dis- 
tances much larger  than  the  aperture dimensions, it can further be  assumed 
that z/r& = 1/z and ( j k  - l/rol) N jlc. The result  is 

u (x ,y ,  x )  = ejkz j- F(f X ?  f y ,  0) e - j X x z ( f z + f $ )  ejas(fxX+fgY) d f x d f y ,  (10) 

“00 

and 

“00 
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respectively. It can  be  readily verified that  the above  expressions, without 
the geometrical  phase  term,  are  the  solution of the  paraxial  equation, i e . ,  

( ax2 dy2 d x  ” )  d2 a 2  
- + - + j 2 k -  q x ,  y, x )  = 0 ,  ( x ,  y, x )  E s2 , (12) 

with 

U ( X ,  y, x )  = ejkz ~ ( x ,  y, x )  , 

and  boundary  condition for U given by (2).  The Fresnel approximation is 
often  called the  paraxial  approximation.  Its validity for modeling  diffraction 
effects at the required  accuracy level is discussed below. 

Near-field diffraction  algorithms are based on numerical integration  or 
approximation of either  (10) or (11). Methods that solve equation (10) nu- 
merically are usually  referred to as angular spectrum  methods. The use of 
Fast Fourier  Transform (FFT) for the  calculation of the Fourier  integrals  ap- 
pearing in (10) results  in a powerful and  robust solver. Its  computational cost 
is proportional  to  that of two 2-D FFT’s.  Guard-band  ratio  requirements, 
based  on  approximations of the  integrals involved, have been introduced  in [8] 
and [9], to avoid aliasing  and energy spill-over to  the  computational  domain. 

Equation (11) is also a Fourier-type  integral,  therefore FFT may be em- 
ployed for its  computation.  This  method requires  only  one 2-D Fourier trans- 
form. However, the scaling  factor 1/Xx that  appears  in  the Fourier kernel 
introduces  certain  computational problems that  are described  later  in  the 
paper.  The  accuracy of the  method was examined  in [lo], and  it was found 
to  be  satisfactory for sufficiently large  propagation  distances.  Additional nu- 
merical  tests performed  in the  context of the present study, also indicate  that 
this  method  produces reasonable  results. However, if the  error  tolerance  is 
very small,  this  method  is  not recommended, even for large  distances. 

A robust  method  to solve equation (11) numerically is to  approximate  the 
integral by a Fourier series whose sum  can  be  computed  with the Goertzel- 
Reinsch algorithm,  Stoer & Bulirsch [12]. This  algorithm  performs simul- 
taneous  summation of sine and cosine series by employing the Clenshaw’s 
recurrence  formulae that hold for trigonometric  functions.  One of the  advan- 
tages of this  method  is  that  there is freedom in  the choice of the  sampling 
intervals at the ( x ,  y) plane where the field is computed.  In  contrast,  there 
is no  such  freedom if FFT is employed. In  the sequel, this  method will be 
referred to as the direct method. 
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The  critical  parameter for the problem  under  consideration is the Fresnel 
number, defined as 

W2 

Ax 
Fr = -,  

where w is the  characteristic semi-length of the  aperture. Simple  examination 
of equations (10) and (11) reveals that  the integrand in (10) becomes more 
oscillatory as  the Fresnel number  decreases, while the  opposite holds for the 
integrand in (11). Therefore,  with fixed grid sixes, the accuracy of the  angular 
spectrum  approach  is  improving  as  the Fresnel number  increases, while the 
opposite  is  true for the  direct  method. 

It should  be  mentioned that, in principle, other  methods  can be  employed 
for the numerical  integration of equation (11). Such methods  are gaussian 
and  Clenshaw-Curtis  type  quadratures.  The  later  method  is  based  on  Cheby- 
chev polynomial  approximation of the  integrand, Clenshaw & Curtis, [13], 
and Littlewood & Zakian, [14]. The main  disadvantage of these  algorithms 
is that  they can  not  be employed in  equispaced  grids, see also the discussion 
below. Equispaced  grids are very convinient  in  diffraction  modeling  because 
beams  can  be  propagated  from  element to element  in a straightforward  man- 
ner. 

A method  that works with  uniform  sampling is Filon-type  quadrature, 
Levin [15]. This  method  transforms  the  integration problem to  an O.D.E. 
problem that is solved by a collocation  technique. Its  main  disadvantage 
is that  it requires the solution of a  linear  system of equations  (the colloca- 
tion  conditions), which makes  it slow. On the  other  hand,  discrete Fourier 
transforms combine  robustness,  speed,  and  straightforward  implementation. 
Therefore,  they  are very effective for the  calculation of diffraction  integrals. 

Calculation of the Average Phase of the Field 

The  quantity  that  has  to be  evaluated  with  high  accuracy  is  the  average 
phase of a  beam over an  optical  element, A. This element is usually a detec- 
tor.  The average  phase is defined in a way that is compatible to  the process of 
interferometric  measurements.  Consider  a  beam of unknown amplitude  and 
phase  distributions, combined  with  a reference signal of constant  amplitude 
and phase. The average  phase is evaluated  via  intensity  measurements of the 
combined  beam at  the  detector. If the  properties of the reference  signal are 
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known, the  measured  intensity  depends only  on the real and  imaginary  part 
of the  integral of the unknown beam over the  detector. 

Therefore,  the average  phase  is defined as the  phase of the  integral of the 
field over A, 

I = /U(x,  y,z)  dxdy. 
A 

In  computer  modeling cp can  be  evaluated  directly  from  the  above  relation  via 
numerical  quadrature, provided the field U(x, y) is known. Algorithms  such 
as  the two-dimensional  extension of Simpson’s  rule or  Romberg  integration 
are  quite often sufficient for such task. 

A very effective way to  compute I is Gaussian  quadrature. Gauss-Legendre 
integration, for example, is superior to any  elementary  algorithm  such as 
Simpson’s  rule. It is also very simple  and easy to  program.  Its  main dis- 
advantage is that  the abscissas are  not equispaced.  Therefore, it can  not 
be employed to fields evaluated  from  FFT-based  algorithms. For this rea- 
son,  the numerical integration of the field  was not performed with  gaussian 
qudrature. 

Application of the convolution  theorem provides another way to  compute 
I on  an  orthogonal  grid.  The  procedure is the following. Denote by A(x - 
[, y-q) the optical-element  function of A with  origin at (e, q ) ,  not necessarily 
its  geometric  center. Consider the cross-corellation integral 

which,  in view of the convolution theorem, becomes 

The  quantity of interest, I ,  is equal to  the zero-frequency component of G. 
It  can  be  computed by numerical integration, say  via  Simpson’s  rule of the 
product of the Fourier  transforms of U and A. In  other words, computation 
of the full inverse transform G is not necessary. Numerical tests showed that 
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for large Fresnel numbers  this is the most accurate  quadrature  method  on 
equispaced  grids. At low Fresnel numbers  its  accuracy is similar to  that of 
Simpson's  rule. 

Numerical Tests 

The performances of the  angular  spectrum  method  and  the  direct  method 
have been examined  through a series of numerical tests.  The  tests  consisted 
of beam  propagation  from a square  aperture  to a square  detector; see figure 
1. The  beam at the  aperture  had uniform  phase and  intensity,  equal  to one. 
The geometry was kept as simple as possible so that closed-form solutions 
for the  optical field can  be used for  comparisons. 

It is well known, [l], that in the  context of Fresnel diffraction  the field 
generated by a square  aperture of width 2w is given by 

ejkz 
W J - 7  Y, 4 = - [C(a2) - C(W> + j(S(Q2) - S(Ql>>] x 

2 j  
W 2 )  - W 1 )  + M P 2 )  - S(P1))I 7 (19) 

where the functions C and S are  the Fresnel integrals,  Gradshteyn & Ryzhik 
[16], and 

Q1 = -(w + X ) r n ,  Q2 = ( w  -X)dqTz, 

This  equation  is  the  exact  solution for the  paraxial  equation  with  square 
aperture.  The Fresnel integrals  appearing above can  be  computed  with dou- 
ble precision accuracy  via  standard  algorithms; see, for example,  the JPL 
library math. j p l  . nasa. gov. 

First,  the field  was computed  with  the above closed-form solution.  Then, 
the integral of the field over the  detector was evaluated  with  Gauss-Legendre 
quadrature.  The  number of points used in the  quadrature was successively 
multiplied by a factor of 2 until a convergence of rads  or  better  has 
been observed.  Typically, 512 points on each grid  direction were sufficient to 
provide the required  accuracy.  Henceforth, this  result will be referred to  as 
the  closed-form result of the average phase. It is the reference result which 
numerical  integration  algorithms was compared  with. 
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Next,  the field  was computed  with  the  algorithms described  above. It 
was assumed that  the Fresnel approximation  is  valid. Hence, the field is 
governed by the  paraxial  equation  and  its  integral  representations  are given 
by equations  (10)  and (11). The average  phase over the  detector was evalu- 
ated by applying  the two-dimensional  Simpson’s  rule  on the computed  field. 
Henceforth,  these  results will be  referred to as  the numerical  results. The 
error  on  the  calculation of the average  phase  as a fraction of a wavelength 
was measured  in  picometers. For example,  a 27r error in the average  phase 
is  said to be an error of one wavelength.  Similarly,  a convergence of 
rads in the  computation of the closed-form result  corresponds to accuracy at 
the level of 2% of a picometer, for the wavelengths of interest. Any error in 
the  computation of the average  phase  larger than 20 picometers is considered 
unacceptable for the SIM modeling  efforts. 

Three different sets of parameters were considered.  Double  precision 
arithmetic  has been used throughout.  The  computations were performed 
on a SUN ULTRA-10 workstation, at  the finest  grid that  the machine  could 
provide. The grid size for the  angular  spectrum  method was set at 2048 X 2048 
points. Different guard-band  ratios  had been examined  in  all test cases  con- 
sidered.  The  results  that  are included  in the present work have  been obtained 
with  the  guard-band  ratio that delivered the highest  accuracy  for  each  case. 
The grid for the  direct  method  had been  set at 512 X 512 points. 

Case A corresponds to  the  starlight system of SIM. The  parameters for 
this case are 

X = 0.7pm, 2w = 3.0cm, 2W = 6.0cm, x = 7.0,. . . ,9 .0m, 

where w is the half-width of the  aperture  and W is the half-width of the 
detector.  The Fresnel  number of this problem is F r  N 46.0 at  z = 7m.  
Figure 2 shows intensity  and  phase  plots at (y = 0, z = 7m),  as computed 
from the closed-form solution  (19). 

The angular  spectrum  algorithm proved quite effective, yielding  maxi- 
mum  error of 13.7  picometers, or 0.002 % of the wavelength, at z = 8.7 m. 
This  error  is,  therefore,  acceptable for the SIM modeling  requirements. The 
guard-band  ratio  at  the  aperture was set to 4. Numerical jitter was minimal 
with such  zero-padding. Different guard-band  ratios were also tested. Lower 
ratios gave less accurate  results  due  to energy spill-over in the  computational 
domain. For example,  a ratio value of 2 yielded maximum error of 27.5, at 
z = 8.8m. On the  other  hand, higher ratios  dictated fewer points  inside the 
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detector, which implies lower resolution for the numerical integration of the 
field. Consequently, the accuracy of the  results  dropped when higher  ratios 
were used. With a guard-band  ratio  equal  to 8, the maximum  error was 27 
picometers at z = 9 rn. 

The direct  method  produced  results that were considerably less accurate, 
see figure 4. The maximum  error was encountered at z = 7.85 m and  it was 
equal  to 149.5  picometers. Such error is too high for the  modeling require- 
ments of SIM.  Therefore,  the use of this  method is not recommended for such 
high Fresnel numbers. 

Case B is representative of the  internal metrology  system of SIM. The 
parametrs for this case are 

X = 1.3prn, 2w = 5.0.rnrn, 2W = lO.Ornrn, z = 10.0,. . . ,12.0m. 

Intensity  and  phase  plots of the  optical field at (9 = 0, z = 10 r n )  are shown 
in figure 5 .  The Fresnel number for this case is Fr N 0.48 at z = 10m, 
considerably  smaller  than  the first case. Nonetheless, this  is  not a far-field 
diffraction  case;  computation of the Fraunhoffer  diffraction integral, [l], pro- 
duced  results that were innacurate. 

The function  inside  the first integral  representation of the field has become 
more  oscillatory  because  the Fresnel number  has  been lowered. As a result, 
the  angular  spectrum  method becomes  less accurate.  The  maximum  error 
was  714 picometers, at z = 11.95rn, well beyond the  error  tolerance level. 
The  guard-band  ratio for this case was set  to 8. Even with such  high zero 
padding,  the wavefront profiles suffered from  some jitter  due  to energy  spill- 
over in  the  computational  domain. 

Different guard-band  ratios yielded even less accurate  results. For exam- 
ple, when the  ratio was  lowered to 4, the  error  peak was 2164 picometers 
at z = 10.95 rn. The increase  in the  error  is  due  to numerical jitter on  the 
numerically  evaluated field. On  the  other  hand,  larger  guard-band  ratios 
resulted to insufficient resolution for the numerical integration of the field. 
When  the  ratio was set at 16,  the  error peak was 895 picometers at z = 12  rn. 

In  contrast,  the  direct  method gave results that were extremely  accurate. 
The  integrand in equation (11) is well-resolved with  the  sampling at the avail- 
able  grid  size, 512 points at each grid  direction.  This was expected  because 
this  function becomes less oscillatory as  the Fresnel number  decreases. The 
error  peak was 0.48 picometers at z = 11.35 rn. 
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On a different test,  the  propagation  distance varied from 0.05 m,  to 2.2 m 
(on  increments of 0.05 m), corresponding to a Fresnel number  variation  be- 
tween 0.96 to  2.18,  approximately. The phase  errors of the two algorithms as 
a function of the Fresnel number  are shown in figure 8. For Fresnel numbers 
larger than 20, the  angular  spectrum  method is very accurate  and  superior 
to  the direct  method. At lower Fresnel numbers  the  accuracy  drops at the 
order of  200 picometers. The  guard  band  ratio was set at 4. 

On  the  other  hand,  the  direct  method is extremely  accurate for Fresnel 
numbers  smaller than 20. At larger Fresnel numbers, its accuracy  deterio- 
rates rapidly.  When the Fresnel numbers becomes higher than 50, the  errors 
of the  direct  method  are at the  order of nanometers.  This is due  larger er- 
rors in the  computation of the field, created by insufficient resolution at the 
aperture. Over all,  the required  accuracy  can always be achieved if the an- 
gular  spectrum  method is employed at high Fresnel numbers  and  the  direct 
method at lower ones. The cross-over point is around F r  = 20. 

Case C is  the  last case for which results  are  presented.  The  parameters 
are 

X = 1.3,um, 2w = 3.0cm,  2W = 6.0cm, z = 10.0,. . . ,12.0m. 

Intensity  and  phase  plots of the  optical field at (y = 0, x = 10m)  are shown 
in figure  9. The Fresnel number for this case is Fr  N 17.3 at z = 10m. 

Both  methods performed well. The error  peak for the  angular  spectrum 
method was 28.8 picometers at z = 12 m, figure 10. The  guard-band  ratio 
that gave the most  accurate  results for this case was 4. No jitter was ob- 
served  in the numerically  reconstructed wavefront with  this  ratio.  The  direct 
method, however, was slightly  more accurate, yielding an  error peak of 8.9 
picometers at x = 10.0m, figure 11. 

A numerical  grid convergence study was performed at x = 11.65 m.  The 
results  are shown in figure 12. The  angular  spectrum converges more slowly 
than  the direct  method,  but  the  error is always below the  order of a nanome- 
ter.  In  contrast,  the  direct  method converges much faster  but at coarse  grids 
the  errors  are very large. This convergence rate is typical of series summation 
algorithms, such as  the Goertzel-Reinsch  algorithm employed in  the  direct 
method. 

Overall, the  angular  spectrum  method gives better  results at high  Fresnel 
numbers, while the  direct  method  is more accurate for medium  and low Fres- 
nel numbers.  Both  algorithms  are reasonably fast. However, with the above 
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grid sizes the  angular  spectrum  method is  still  faster.  In  modern  worksta- 
tions, one  calculation of the average  phase  takes  a  fraction of a minute.  In 
conclusion, the desired level of accuracy  can  be achieved for a wide range of 
Fresnel  numbers,  with  appropriate choice of algorithm. 

It should  be  mentioned that  the use of FFT for calculating  equation (11) 
was also tested.  This is the  fastest possible  algorithm  because it requires  only 
one FFT.  The  computations were performed  on  a 2048 x 2048 grid at the 
aperture.  The  results, however, were not  satisfactory.  In  all  the  test  cases 
considered, the  error peaks were at  the order of a  nanometer.  The reason for 
such  high  errors is the following. 

Suppose that  the grid size at  the  aperture is N x N and  that  the Sam- 
pling  interval  is A t .  Then,  the  sampling interval at the  detector is Ax = 
Xz/(NAJ). In other words, Ax is inversely proportional to A t .  The only 
way to make both AJ and Ax sufficiently small  is to increase N .  It  turns 
out  that  to achieve the desired  degree of accuracy, N has to be  larger than 
current  computational resources  can  handle.  Another  complexity  introduced 
by the use of FFT for equation (11) is that  the scaling factor 1/Xx does  not 
allow computation of the field at the  same ( x ,  y) pairs that  the field is known 
at  the  aperture. Numerical  interpolation  is,  therefore,  necessary if one is 
seeking the values at  the same ( x ,  y) pairs. 

Another  point that  merits discussion  is the validity of the  paraxial  ap- 
proximation,  equations (8) and (9). To establish that  this  approximation 
produces  errors  smaller  than  a given tolerance  level,  one  needs to compare 
the exact  solutions of both  the  paraxial  and  the Helmholtz equation.  This is 
not  possible  because, for any given aperture geometry,  closed-form  solutions 
for both  equations  do  not exist.  Nonetheless,  studies  based  on  numerical 
tests, [4], and on asymptotic expansions of the  integral  representations of the 
field, [l], [4], have provided estimates of the range of validity of the approx- 
imation. For all the cases  examined  in this work, the Fresnel  numbers  fall 
into  this  range. 

There is also  significant  numerical  evidence that  the  paraxial  approxi- 
mation is  valid for average-phase  calculations  near the  optical  axis, even for 
large  Fresnel  numbers. More specifically, both  the Helmholtz and  the  parax- 
ial  equation were solved with  the  angular  spectrum  method for all three of 
the above  cases.  In other words,  numerical  solutions of equations (4) and 
(10) were obtained via FFT and compared  with each other.  The  computed 
point-to-point  values for the  optical field agreed up  to  the  5th significant 
digit. More important,  the  results for the average  phase were identical  up to 
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half a  picometer,  in  all  three cases. Fields  generated  from  circular  apertures 
were also  computed;  the average-phase  results were the  same for both  equa- 
tions.  Although  these  tests  do  not  constitute a proof of the validity of the 
approximation,  they provide  a  clear  indication of it. 

Alternative  Methods for Average Phase  Computations 

This section  describes some ideas for computing  the average  phase over 
an element without  point-to-point  numerical  calculation of the optical field. 
Consider the  boundary value problem governed by equations (1)-(3), and  the 
second  integral  representation of its  solution, (6). For 
much  larger  than X ,  the  approximation k >> l/rol is 
the field  over an  entire  constant-x  plane  is  then given 

propagation  distances 
valid. The  integral of 
by 

The  paraxial  approximation was abandoned so that  the  area of integration 
can cover the  entire  constant-z plane. 

The  order of integration  can  be  changed, by employing  Fubini's theorem. 
Formally, one should  establish that  the function  inside  the  inner  integral is 
integrable over both  the  constant-z  plane  and  the  aperture I'. This is easy to 
show if one observes that  it is bounded by the  function f = M/T&,  M > 0, 
which is obviously  integrable over the  domains of interest.  The  integral 
over the  constant-x  plane, which has now become the  inner  integral,  can  be 
written  in  polar  coordinates to take  advantage of the cylindrical symmetry 
of the  function, i e . ,  

where 



Making  the change of variable c = d m ,  relation  (21)  yields, 

The inner  integral  can  be  written  in  terms of the  exponential-integral 
function, Ei(z ) ,  [16]. The final result is 

where IF is the  total field at the  aperture, 

Ir 5 /'u(t,q) d t d q ,  
r 

and  can  be easily evaluated  from  the  boundary  data. 

expansion  is valid for large k z ,  
It is easy to show,  via integration by parts,  that  the following asymptotic 

Further, I,(kz) admits  the following series expansion which 
convergent for all k z ,  [16], 

is uniformly 

7 (27) 

where y denotes the  Euler's  constant.  This series expansion is suitable for 
numerical  purposes for small k z  because  in this case only few terms of the 
series are needed for an  accurate  estimate. As k z  increases, so does the 
number of terms  that have to be  computed  and  the  computation  breaks 
down due  to round off errors. 

The above  relations  can  be used for average  phase computations  only 
if the  optical element of interest is sufficiently oversized with  respect to  the 
beam  width.  The  intensity at the edge of the element  has to  be  approximately 
five orders of magnitude  smaller  than  the peak  intensity. In such a case  one 
can  assume that  the field outside  the  optical element is zero. Then, I can  be 
approximated by I ,  ( k z )  . 
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In  most cases the  optical elements are  not sufficiently oversized and  the 
above  relations  can  not  be  employed. Yet, the  idea of employing  Fubini’s 
theorem  and  interchange  the  order of integration  can  still  be useful. In 
general,  the field at a point ( x ,  y, z )  E R is given by a Fredholm integral 
equation of the first  kind,  Kress [17], 

where U ( t ,  7) is the field at the  boundary  and  the kernel K ( z ,  y, z ;  t1 7) 
is some known function. K is weakly singular  in R, which implies that  it is 
continuous  everywhere  outside I?. Hence, K is integrable over an  arbitrary 
compact  subset of R\r. Therefore,  one can  substitute (28) to  the expression 
for the integral 1 over .a detector A, equation (16), and  interchange  the  order 
of the  integration.  This  procedure gives 

The inner  integral  is  just  the represention of the field generated by an  aper- 
ture  with  same  geometry as A, emitting  plane waves of uniform  intensity, 
equal to  one. If this geometry is simple, e.9. square  or circle, then  the  inner 
integral  can  be  either  written  in closed form or  computed very rapidly.  Once 
this is done,  the  outer  integral  can  be  evaluated  with  the 2-D Simpson’s  rule. 

This  method  can  be  applied  to  rectangular  or  circular  detectors for an 
arbitrary wavefront U(5,  q )  coming off I?. Such detectors  are very often 
encountered  in  practice.  There  are  cases, however, that  the geometry of the 
detector is more  complicated.  Then,  the  inner  integral of the above relation 
can no longer be  written in a simple, closed form. The way to get around 
this  situation is to  partition  the  computational  domain of the  detector  to 
rectangular  elements.  The  procedure described  above  can be  applied  to each 
element  seperately. The average  phase over the  detector is just  the  sum of 
the average  phases over the rectangular  elements. 

As a test for this  method, consider a circular  aperture  with a square 
detector.  The  aperture  has  radius w and  emmits  plane waves of constant 
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amplitude, i. e., 

One  can  substitute (19) into (29) and  integrate over the  circular  aperture. 
To check the accuracy of the  method,  the  results  are  compared  against  those 
produced by direct  evaluation of the  optical field. 

The procedure for the  direct  evaluation of the field is the following. Ax- 
isymmetric  problems like this one admit  solutions of the  form,  Siegman [18], 

00 

where JO is the Bessel function of first  kind and zero order. X denotes  the 
Hankel transform of a function, defined as, [l], 

For the  particular problem  under  consideration, the  transform of the field at 
the  aperture,  equation (30), is  written as 

where J1 is the first-order Bessel function of first kind.  Equation (33) can  be 
substituted  into (31), yielding 

00 

This  integral  can  be  computed  accurately  with  the quasi-fast  Hankel 
transform developed by Siegman, [19]. The  transform is one-dimensional 
(the  problem  is  axisymmetric) , therefore the resolution  can  be  easily in- 
creased until  the desired  accuracy  requirement is met; see also [20]. The 
numerically  reconstructed field is integrated over the  square  detector  with 
Gaussian  quadrature.  This  procedure yields a very reliable  result that  can 
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be used as a reference to check the accuracy of the proposed method based 
on  equation  (29). 

Results of numerical tests  with  parameters from  cases A and B above 
are given below. The beam at the circular aperture has  uniform  intensity 
and phase. For the proposed method, 2048 x 2048 equispaced  points were 
used  in the  integration over the  aperture. On the  other  hand,  the  quasi-fast 
Hankel  transform was performed on a grid of 32768 points,  and  the field was 
evaluated at  8192 x 8192 points  inside the  square  detector. 

These  tests  indicate  that  the accuracy of the proposed method is satis- 
factory.  Figure 11 contains  plot of the phase error in the  phase for a  beam 
coming off a circular  element. The  parameters of the problem were the  same 
as  in  case A above. The  error peak was just  4pm  at x = 9 m .  Figure 12 
contains  plot of the phase  error when the  parameters were chosen from  case 
B. The error  peak was 23.14pm at x = 12m.  It is worth  mentioning that 
the proposed  algorithm  is sufficiently fast.  This is  because it relies  on  simple 
solutions of the field which are  computed very rapidly. Further,  it is quite 
robust  and powerful because  equation  (29) is exact; no  approximations have 
been  made for its  derivation. 

Conclusions 

Fourier-based  algorithms for computing  the average  phase of a  beam over 
an element  in the  near field  have been  examined  in the present study.  Typi- 
cally, this is a two-step  procedure. First,  the field is  computed  numerically, 
and  then it is integrated over the  area of the  element. For large  Fresnel 
numbers  (larger  than  about  20),  the most accurate result  can  be obtained 
with  the  angular  spectrum  method. For smaller Fresnel numbers it can  be 
obtained  with  direct  evaluation of the Fresnel diffraction integral (11) via the 
Goertzel-Reinsch algorithm. 

The numerical  integration of the field can be best  performed  with  Gaus- 
sian  quadrature. However, the field is typically  evaluated  on  equispaced  grids 
and, therefore,  gaussian  quadrature can  not  be  employed.  Nonetheless, the 
two-dimensional version of Simpson’s  rule  provides sufficient accuracy.  In  all 
cases tested,  the  error in the average  phase was smaller than  15  picometers 
if the  appropriate  algorithm was used. 

Additionally, a new method  to  compute  the average  phase was introduced. 
It relies  on  a  reciprocity  property of the average  phase and  it requires the 
partioning of the  optical element of interest to rectangles  (for which closed- 

19 



form  solutions of the field exist).  Preliminary  numerical  tests showed that 
this  method yields  satisfactory  results  and,  therefore,  can  be  considered  as 
a  viable alternative  to two-step  procedures.  Finally, for over-sized elements, 
analytical expressions for the average  phase were presented that  do  not re- 
quire  any  numerical  integration. 
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Figure Captions 

Figure 1: Schematic of the  test cases. 

Figure 2: Case A. 

Figure 3: Case A. 

Figure 4: Case A. 

Figure 5: Case B. 

Figure 6: Case B. 

Figure 7: Case B. 

Figure 8: Case B. 

Plot of the  optical field at y = 0, z = 7 m. 

Average-phase error of the  angular  spectrum  method. 

Average-phase  error of the  direct  method. 

Plot of the  optical field at y = 0, x = 10 m. 

Average-phase error of the  angular  spectrum  method. 

Average-phase error of the  direct  method. 

Average-phase  error of the two methods as a function of 
Fresnel  number. x = 0.1, . . . ,2.2 m. 

Figure 9: Case C. Plot of the  optical field at y = 0, z = 10 m. 

Figure 10:  Case C. Average-phase  error of the  angular  spectrum  method. 

Figure 11: Case C. Average-phase error of the  direct  method. 

Figure 11: Case C. Numerical convergence of the two methods. N is the 
number of grid  points at each direction,  in  the  aperture  plane. x = 11.65 m. 

Figure 13: Case A; circular  aperture,  diameter 3 cm. Average-phase error of 
the proposed alternative  method. 

Figure 14: Case B; circular  aperture,  diameter 5 mm. Average-phase  error 
of the proposed alternative  method. 
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